Clustering Recommenders in Collaborative Filtering Using Explicit Trust Information
نویسندگان
چکیده
In this work, we explore the benefits of combining clustering and social trust information for Recommender Systems. We demonstrate the performance advantages of traditional clustering algorithms like kMeans and we explore the use of new ones like Affinity Propagation (AP). Contrary to what has been used before, we investigate possible ways that social-oriented information like explicit trust could be exploited with AP for forming clusters of high quality. We conducted a series of evaluation tests using data from a real Recommender system Epinions.com from which we derived conclusions about the usefulness of trust information in forming clusters of Recommenders. Moreover, from our results we conclude that the potential advantages in using clustering can be enlarged by making use of the information that Social Networks can provide.
منابع مشابه
یک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملTrust No One: Evaluating Trust-based Filtering for Recommenders
To be successful recommender systems must gain the trust of users. To do this they must demonstrate their ability to make reliable predictions. We argue that collaborative filtering recommendation algorithms can benefit from explicit models of trust to inform their predictions. We present one such model of trust along with a cost-benefit analysis that focuses on the classical trade-off that exi...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملCredibility-based Social Network Recommendation: Follow the Leader
In Web-based social networks (WBSN), social trust relationships between users indicate the similarity of their needs and opinions. Trust can be used to make recommendations on the web because trust information enables the clustering of users based on their credibility which is an aggregation of expertise and trustworthiness. In this paper, we propose a new approach to making recommendations bas...
متن کامل